# Low-Complexity Beam Selection Technique for Multi-Beam LEO Satellite Communications

Hyeon Seung Ryu, Yong-Jin Song, Ki-Hun Lee, and Bang Chul Jung

*Department of Electronics Engineering*, *Chungnam National University*, Daejeon, South Korea ryuhs.wicl@gmail.com, yjsong@o.cnu.ac.kr, kihun.h.lee@cnu.ac.kr, bcjung@cnu.ac.kr

*Abstract*—Multi-beam satellite communication systems have been studied to overcome the spectrum scarcity in 6G nonterrestrial networks (NTNs). The multi-beam allows a single satellite to configure multiple spot beams toward multiple ground areas over the same time-frequency radio resources. However, this may also lead to inter-beam interference, hindering spectral efficiency (SE) improvements. This paper proposes a lowcomplexity spot-beam selection technique for low-earth orbit (LEO) satellite communication systems that maximize the SE by activating some of the multiple spot beams based on each spot beam's signal-to-interference ratio (SIR). Simulation results reveal that the proposed algorithm effectively ameliorates the SE of multi-beam LEO satellite networks.

*Index Terms*—Low-earth orbit (LEO) satellite networks, multibeam satellite communications, spot-beam activation, inter-beam interference, throughput.

### I. INTRODUCTION

Sixth-generation (6G) cellular networks envision a nonterrestrial network (NTN) architecture, incorporating low-earth orbit (LEO) satellites, high-altitude platform stations (HAPSs), and unmanned aerial vehicles (UAVs) [1], [2]. In particular, LEO satellites are one of the indispensable components for realizing worldwide coverage and connectivity with high costefficiency and low latency [3], [4]. To overcome the spectrum scarcity in future NTNs, a multi-beam satellite communication system has been investigated, which allows a single satellite to serve multiple terrestrial areas with the same radio resources through multiple high-gain spot beams [5]. Unfortunately, this can also deteriorate the downlink sum-rate due to inter-beam interference, so various technologies, such as sophisticated beam design, interference cancellation, and frequency resource allocation, have been widely studied [6], [7]. From a different perspective, in this paper, we propose a spot beam activation technique to maximize the SE of multi-beam LEO satellite networks by alleviating inter-beam interference.

# II. SYSTEM MODEL

We consider a downlink NTN consisting of an LEO satellite and multiple ground base stations (BSs) as in [6]. The satellite is located at a position  $(0, 0, H)$  in three-dimensional Cartesian coordinates, and  $N<sub>B</sub>$  BSs are placed with the same distance  $D$ between adjacent BSs based on the BS at the origin (0, 0, 0). Moreover, the satellite is equipped with multiple parabolic antennas to configure  $N_B$  spot beams simultaneously, each serving one BS. Fig. 1 illustrates the system model considered in this paper with  $N<sub>B</sub> = 19$ . We assume that each spot beam is perfectly oriented towards its dedicated BS.



Fig. 1. System model of a multi-beam LEO satellite network with  $N_B = 19$ .

Let  $\mathbf{R} = [r_{j,i}] \in \mathbb{R}_+^{N_B \times N_B}$  be the received signal strength (RSS) matrix, where  $r_{j,i}$  represents the RSS that the  $j \in$  $\{1, 2, \ldots, N_B\}$ th BS receives from the  $i \in \{1, 2, \ldots, N_B\}$ th spot beam, which is expressed from [7, (11)] as follows:

$$
r_{j,i} = \frac{P^{\mathsf{TX}}}{N_{\mathsf{A}}} \cdot \left(\frac{c}{4\pi f_c d_j}\right)^2 \cdot \frac{\sin \theta_j}{A_{\text{zen}}(f_c)} \cdot G(\zeta_{j,i}) \cdot |h_j|^2, \quad (1)
$$

where  $P^{TX}$  denotes the satellite's total transmission power and  $N_A$  represents the number of activated spot beams, i.e., the satellite is assumed to allocate the transmit power evenly for each activated beam; c,  $f_c$ , and  $d_j$  are the light speed (m/s), carrier frequency (Hz), and propagation distance (m) between the satellite and the jth BS, respectively. The third term on the right-hand side represents the atmospheric absorption, where  $A_{\text{zen}}(f_c)$  denotes the zenith attenuation depending on the carrier frequency, and  $\theta_j$  is the satellite elevation angle from the *j*th BS. Next,  $G(\zeta_{j,i})$  represents the beam gain from the ith spot beam to the j<sup>th</sup> BS, and  $\zeta_{j,i}$  is the steering angle difference in degrees between spot beams  $i$  and  $j$ . This is modeled as follows [8]:

$$
G(\zeta_{j,i}) = \begin{cases} 1, & \text{when } \zeta_{j,i} = 0, \text{i.e., } j = i, \\ 4 \left| \frac{J_1(ka \sin \zeta)}{ka \sin \zeta} \right|^2, & \text{when } 0 < |\zeta_{j,i}| \le 90, \end{cases}
$$

where  $J_1(\cdot)$  is the first-order Bessel function of the first kind; a,  $k = 2\pi/\lambda$ , and  $\lambda$  are the parabolic antenna's radius, wave number, and carrier wavelength, respectively. Finally,  $|h_j|^2$ represents small-scale fading modeled to follow a squaredshaded Rician (SSR) distribution. Note that if  $j = i$  in (1), it

This work was partly supported by the Institute of Information  $&$  communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2024-00396992) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1I1A3073740).

Algorithm 1 Low-Complexity Spot-Beam Selection





Fig. 2. Spectral efficiency of the proposed spot beam selection technique according to the satellite altitude.

is the desired signal strength; otherwise, it is the inter-beam interference.

### III. PROPOSED SPOT BEAM SELECTION ALGORITHM

We design a low-complexity spot beam selection algorithm for the multi-beam LEO satellite communication system, which activates  $N_A$  of the  $N_B$  spot beams to maximize the spectral efficiency (SE). Algorithm 1 represents a pseudo-code of the proposed algorithm, where  $\overline{\mathbf{R}} = [\overline{r}_{j,i}] \in \mathbb{R}_+^{N_B \times N_B}$ . Due to the high mobility of LEO satellite constellations, it is infeasible for the satellite to estimate instantaneous channel state information (CSI) for all BSs; hence, the satellite only exploits the average RSS,  $\overline{r}_{j,i} = \mathbb{E}[r_{j,i}], \forall j, i \in \{1, \ldots, N_B\},\$ based on the BSs' geographic information. In Algorithm 1,  $n_A$  and  $n_B$  indicate the number of activated spot beams and the index of the first activated beam for each iteration, respectively. In other words, the proposed algorithm determines a set that maximizes the SE, denoted by  $B<sub>act</sub>$ , as the final activation beams, starting from each spot beam (line 9) and gradually increasing the number of beams activated according to the signal-to-interference ratio (line 11). Since the network operates on a single channel, the SE is given as

$$
S = \sum_{j \in \mathcal{B}_{\mathsf{A}}} \log_2 \left( 1 + \frac{\overline{r}_{j,j}}{\sum\limits_{i \in \mathcal{B}_{\mathsf{A}} \setminus j} \overline{r}_{j,i} + N_0 W} \right), \tag{2}
$$

where  $N_0$  and W are the noise spectral density and channel bandwidth, respectively.

#### IV. SIMULATION RESULTS

We verify the proposed spot beam selection technique through computer simulations. The simulation parameters are the same as [7, Table II]. Furthermore, we consider heavy shadowing environments; hence,  $|h_j|^2$  in (1) conforms to an independent and identically distributed SSR distribution, i.e.,  $|h_j|^2 \sim$  SSR(0.063, 0.739, 8.97 × 10<sup>-4</sup>),  $\forall j$ . The simulations were performed according to satellite altitude  $H \in \{500, 600, \ldots, 1000\}$ , and the proposed algorithm was compared to two techniques: activating some beams based on maximum intensity (maxSNR) and exploiting all spot beams (Conv). Fig. 2 shows the SE performance of the proposed spot beam selection algorithm and benchmark schemes. In the proposed algorithm, the number of activated spot beams is  $N_A = \{7, 7, 3, 3, 3, 2\}$  for each altitude. As the satellite altitude increases, the desired signal strength gradually decreases, deteriorating overall SE. However, we can observe that the proposed algorithm significantly improves SE performance with a small number of spot beams. It demonstrates the effectiveness of the proposed beam selection mechanism.

## V. CONCLUSION

This paper proposed a low-complexity spot-beam selection technique for multi-beam LEO satellite communication systems. The proposed algorithm activates multiple spot beams among all beam candidates to maximize SE by alleviating inter-beam interference. Simulation results showed that it outperforms using all available spot beams simultaneously. As further work, we will design a joint optimization technique of beam selection and frequency allocation for multi-beam LEO satellite networks.

#### **REFERENCES**

- [1] M. Giordani and M. Zorzi, "Non-terrestrial networks in the 6G era: Challenges and opportunities," *IEEE Netw.*, vol. 35, no. 2, pp. 244–251, Mar./Apr. 2021.
- [2] K. -H. Lee, S. Lee, J. Park, H. Lee, and B. C. Jung, "MUSCAT: Distributed multi-agent *Q*-learning-based minimum span channel allocation technique for UAV-enabled wireless networks," *Comput. Netw.*, vol. 247, Jun. 2024, Art. no. 110462.
- [3] S. Liu et al., "LEO satellite constellations for 5G and beyond: How will they reshape vertical domains?," *IEEE Commun. Mag.*, vol. 59, no. 7, pp. 30–36, Jul. 2021.
- [4] X. Luo, H. -H. Chen, and Q. Guo, "LEO/VLEO satellite communications in 6G and beyond networks – Technologies, applications and challenges," *IEEE Netw.*, early access, Jan. 15, 2024, doi: 10.1109/MNET.2024.3353806.
- [5] Y. Rahmat-Samii and A. C. Densmore, "Technology trends and challenges of antennas for satellite communication systems," *IEEE Trans. Antennas Propag.*, vol. 63, no. 4, pp. 1191–1204, Apr. 2015.
- [6] E. Kim, I. P. Roberts, P. A. Iannucci, and J. G. Andrews, "Downlink analysis of LEO multi-beam satellite communication in shadowed Rician channels," in *Proc. 2021 IEEE GLOBECOM*, Madrid, Spain, 2021.
- [7] E. Kim, I. P. Roberts, and J. G. Andrews, "Downlink analysis and evaluation of multi-beam LEO satellite communication in shadowed Rician channels," *Trans. Veh. Technol.*, vol. 73, no. 2, pp. 2061–2075, Feb. 2024.
- [8] *Study on new radio (NR) to support non-terrestrial networks (NTN)*, 3GPP TR 38.811 V15.3.0, Jul. 2020.